Invasion dynamics of the varnish clam (Nuttallia obscurata): A matrix demographic modeling approach
Loading...
Issue Date
2007-08-01
Authors
Dudas, Sarah E.
Dower, John F.
Anholt, Bradley R.
License
Subject
Abstract
Marine invaders have become a significant threat to native biodiversity and ecosystem function. In this study, the invasion of the varnish clam (Nuttallia obscurata) in British Columbia, Canada, is investigated using a matrix modeling approach to identify the life history characteristics most crucial for population growth and to investigate population differences. Mark–recapture analyses and field collections from 2003 to 2004 were used to determine individual growth, survival rates, and fecundity for two sites. A multi-state matrix model was used to determine population growth rates and to conduct sensitivity and elasticity analyses. A life table response experiment was also used to determine what life history stage contributed most to observed differences in population growth rates. Population survey data were used in conjunction with the matrix model to determine plausible recruitment levels and to investigate recruitment scenarios. Both populations are currently declining but are likely sustainable because of the pulsed nature of large recruitment events. Survival of larger clams (>40 mm) is the most important for population growth based on elasticity and sensitivity analyses. Adult survival also had the largest influence on observed differences between site-specific population growth rates. The two populations studied differed in recruitment dynamics; one experiencing annual recruitment with higher post-settlement mortality and the other, episodic recruitment and lower post-settlement mortality. The most influential factor for the successful invasion of the varnish clam appears to be survival of the larger size classes. Therefore, any process that decreases adult survival (e.g., predation, commercial harvest) will have the greatest impact on population growth.